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ABSTRACT

As an alternative to conventional moment methods,
spectral iterative techniques (SITs) are intro-
duced for the full-wave 3d analysis of (M)MIC

structures. A spectral domain integral operator
formulation is used in analogy to standard scatte~
ring problems. The employed iterative computa~
tional techniques avoid the handling of large
matrix equations otherwise required in the treat-
ment of complex geometries. Hence, computation
time is reduced considerably and the capability of
analyzing irregular microstrip structures is ob-
tained for problems exceeding the scope of moment
methods.

INTRODUCTION

The solution of many design problems still exist-
ing today for MICs and MMICs depends to a high
degree on the availability of hybrid-mode full-
wave analysis tools for the characterization of
microstrip type components. In particular, the
analysis of (M)MIC structures "en bloc", i.e.
without segmentation into substructures, is a de-
sired goal since this allows to take into account
general coupling phenomena and package effects
/1/. 1In this respect, the contribution presented
here is aimed towards the analysis of components
of higher geometrical complexity avoiding increa-
singly larger matrices as they come along with
conventional moment method solutions. The approach
used here formulates a source-type integral equa-
tion in analogy to scattering problems /2/,/1/
and adapts the SIT to the full-wave, shielded 3d
(M)MIC problem. Hithero, SITs have only been ap-
plied to MIC problems in the quasi-static or
quasi-TEM formulation, i.e. wunder the assumption
of zero curl of the electric field /3/-/5/.

The main advantage offered by the described SITs
is that the number of mathematical operations re-—
quired in the algorithms increases about linearly
with M, the number of unknowns, Therefore, these
techniques offer the perspective of improved com-—
putational efficiency for the analysis of com—
plicated (M)MIC shapes, In a resently published
modular approach /1/ we use Galerkin's method for
analyses with up to about M = 600 expansion func-
tions (unknowns) and with computation times grow-
ing as M4..M2, Our research on SIT appproaches
presented here is a contribution made to overcome
such practical limits on workstation computers.
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SCATTERING FORMULATION FOR (M)MIC ANALYSIS BY
ITERATIVE TECHNIQUES

For the rigorous electromagnetic 3d analysis of
planar microstrip structures using SITs, a three
layer lossless shielded (M)MIC-medium as shown in

Fig. 1 is considered. Setting up scalar LSE and
LSM electromagnetic potentials at each layer, the
well known analytical spectral domain procedure
/2/ leads to a linear integral equation. We intro-
duce the operator description

Lq:= J[ K(x,y,x",y") &' dy' , x,5 € Do e

where the kernel K represents the Green's dyadic
finite Fourier expansion associated with the boun—
dary value problem. L@ is a first kind Fredholm
type integral operator and maps the surface cur-
rent density on a subdomain § <€D . into the
electric field in the x,y plane, the total (M)MIC
surface area Do = (0,a) X (0,b).

In order to apply iterative computational tech-
niques to planar circuit analysis, a specific
scattering problem is formulated in  analogy to
standard scattering expressions in antenna or ra-
dar theory. In this context an "incident" electric
field E; is generated in the 'scattering plane"

(the (M)MIC substrate surface Diq ) using one or
more impressed source current distributions J. .
=imp
E-j_: - =]‘$Ql]~imp » X,7 € DtOt (2)
Here, Q € Dgot is the subregion on which the im-
pressed current density has been defined (see
Fig. 1). The specific scattering problem dis then
formulated as
LpJ =8 ., xyeD 3)
The region D is the microstrip conductor pattern
(scatterer) of the (M)MIC configuration of inte-

rest (Fig. 1).

To get the desired solution for (M)MIC characteri-
zation the source current distribution Jjp, and
the associated region Q in equation (2) “must be
chosen in a physically meaningful way related to
the excitation of components in planar circuits.
Accordingly, the source current densities Qimp ap-
plied are derived from those of the fundamental
strip modes in the component reference planes.
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It may be noted, that the operator equation (3)
has only the trivial solution Jd=~Jdimp if Q € D
is choosen. Hence, the condition Q €D is re-
quired, but an overlap region Q A D %+ ¢ may exist
and is employed in our source concept (see Fig. 1
and Fig. 3). Further, the uniqueness of the solu-
tion of (3) is guaranteed except at eigenfrequen—
cies, for which the homogeneous equation £®'£;= 0
has non-trivial solutions.

General (M)MIC structure excited by im-

pressed sources (region Q) with illustra~
tion of the discretization scheme (mesh
nodes). D is the scattering domain, on
which the boundary conditions have to be
satisfied.

ITERATIVE TECHNIQUES AND NUMERICAI. REALIZATTION

Equation (3) is suited for application of the SIT
in a manner as known from true scattering prob-
lems. To solve the operator equation (3) we con-
sider two known iterative methods which propose
good convergence properties:

- Van den Berg s integral-square-error
tional technique, /6/-/8/,
in the following, and

computa-
denoted as method I

- the (generalized bi)conjugate gradient method
recently described by Sarkar /9/ denoted as
method IT here.

Method I minimizes the integral-square-error at
each iteration step n:
RpaRe> = IR M * = lILp-dy - By |2 *

Basis functions lirearly related to the residual
Ry, are generated in each step according to the
contrast source truncation technique /6/ and are

then orthogonalized completely by a Gram—Schmidt

procedure in order to minimize the least square
functional (&),
Method II uses the energy norm functional:

F(Jp) =<LpJe ~ Jy)»[We - Jn) > (5)

Since the operator in our formulation (3) is real
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and symmetric if suitably normalized field quanti-
ties are employed, this is completely equivalent

to the ordinary conjugate gradient method. The
functional (5) is minimized in each step of the
iteration /9/. J. is the exact solution to
equation (3).

The realisation of SITs with the above given
algorithms requires numerical representation of
the operator Lp acting on the general vector

function f. To achieve this, the following steps
have to be carried out:

- Discretisation of the region D and approxima-

tive representation of the vector component
functions £y, £y,
- Fourier transform of functions into spectral
domain,
~ Application of the operator in its spectral
form,
- Inverse Fourier transform back into spatial
domain.
The dyadic operator expression can be written as
-1 ~ ~
Tes O Zi Z1g | [Tes(OED)
Lyf = gl , (6)
O Fsc || 212 229 | (FaclOL)
1, x,yeD
with 0= (7)
0, =x,v¢D.

%;s is a finite 2d Fourier cosine-sine_ transform
and fsc a sine-cosine transform and 7 are the
spectral terms of the hybrid mode Green's dyadic,

The simplest way to discretize a shape of inter-
est is subdivision into a rectangular 2d mesh
choosing adequate resolution Ax, Ay. Representa-
tion of any 2d function is then obtained dis~
crete values on the grid nodes fg(m,n), fy(m,n),
e.g.
g N&/Z Nx/2
o) = £(uy) L T (xembe) S(y-ndy) ()
n=0 m=0
with Ax = 2a/NX, Ay = 2b/Ny 9)
Arbitrarily shaped (M)MIC structures are treated

simply by scanning the contour and sampling at the
mesh nodes (see Fig.1). Better approximations can
be obtained by convolution of the sampling values
with suitable subdomain basis functions, e.g.
rectangular pulse /5/, roof top /10/,/11/, or
higher order types /1/. The functions represented
by 2d sequences of discrete values are then trans—
formed into the spectral domain by real discrete
combined sine and cosine transforms.

N-1N-1
y X

D := SCAL ) fZ(m,n)cos(%ﬂmi)sin(éﬂnk) (10)
=0 m=0 x v

t

Ccs

Tgc is defined in analogy with sine and cosine
functions interchanged and for inverse transforms
only the scale factor SCAL is replaced, The spec-
tral operations by multiplication with 7 are trun—
cated by Ny /2, Ny/2.

All 2d discrete transforms defined in equation
(10) are carried out numerically by very efficient
appropriately specialized FFT algorithms.



RESULTS AND ILLUSTRATIONS

In order to illustrate some details of our scat-
tering type SIT solution process, a microstrip
open stub example is considered with geometrical
data taken from /10/ (Fig. 2). Only the dominant
longitudinal current density component J, is con-
sidered. The transverse current density’ Jx can be
neglected in this example. The chosen source dis-
tribution Jyipp with a Maxwell term in x direc-
tion and a ramp function in y direction is shown
in Fig. 3. With this excitation, an electrical
field E 1is generated according to eq. (2) and

forms the right hand side of the operator eq. (3).
Using a split radix FFT with Ny = 40 and Ny = 80
the SIT solution has been performed by metgods I
and II. The resulting solution for f = 1.3 GHz is
illustrated in Fig. 4. The total current (Fig. 4a)
consists of the excited portion Jy and the source
portion Jyipp. In Fig. 4b the associated total
electric %iefd distribution is presented. Note,
that the quantities Jytot and Eytor obtained from
the numerical solution represenz a superposition
of source and scattered contributions. The bound-
ary condition E . . = 0 is satisfied on region D
only, i.e. on the microstrip metallization.

The normalized residual error for both methods
employed (as implicitly defined in eq. 4) is shown
in Fig. 5. For method T the normalized error de-
creases monotonically and reaches a value of less
than 0.01% after 20 iterations. Convergence be-
havior of method II is not monotonic and about 5%
accuracy is obtained with 20 iterations.

Using the reaction concept the frequency dependent
input impedance of the stub has been calculated
and compared to other results (Fig.6). We achieved
good agreement with the solution obtained by our
conventional approach /1/ in which also a mode
related source concept is employed. The deviation
from J. C. Rautio's results /10/ is mainly caused
by the completely different source model used by
him, which consists of only one subsectional cur-—
rent element and is associated with some kind of
injection effect, accordingly.

To demonstrate the capability of our SIT ap-
proaches to treat irregular microstrip structures
with a higher number of unknowns, the notched stub
example taken from /10/,/11/ 1is also analyzed
here. The results shown below are obtained by
method II using a radix-2 FFT with Ny = 128, and
N, = 128. In Fig. 7 we illustrate the current flow
and the associated component current distributions
at 2 CHz. The normalized error decreases below 10%
in about 5 minutes on a Micro VAX. Note, that for
the solution of this example already 1712 un-
known grid values have been used which by far
exceeds the number of subsections in the original
work /10/,/11/.

We observed that the good convergence properties
of method I are deteriorated if both current com-—
ponents are taken into accout, while the error
behavior of method II is maintained.

Again input impedance versus frequency computed
with SIT IT and the reaction concept is given in
Fig. 8. Comparison with the original results /10/,
/11/ is made. The same deviation related to the
choice of the source distribution as in the open
stub example are found.
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Fig. 2 Microstrip open stub with discretization

and numbering of grid lines for SIT solu-
tion, geometrical data taken from /10/.
Package: a = 20mm, b = 40mm, h = 50mm
Substrate: d = 10mm, €. = 10
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Fig. 3 Impressed source current distribution inmp

at region Q.

Jytot =Jy * Jyimp

Fig. & Total current density Jytot (a) and elec-

tric field Eypoe (b) in the x,y plane for
SIT solution at f = 1.3 GHz.



Fig. 5

Comparison of the
normalized errors
for both SIT meth-
ods as a function
of the number of
iterations

(open stub example
at 1.3 GHz)
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Fig. 7 Notched stub analyses example. Geometrical
data taken from /11/.
a) vector surface current flow diagram at 2GHz
b) associated current component J(x,y)
c) associated total current component Jytot(x,y)
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Fig. 8 Input impedance of notched stub versus
frequency calculated from SIT method II.

Comparison with the results of /11/ is

also shown.
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