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ABSTRACT

As an alternative to conventional moment methods,

spectral iterative techniques (SITS) are intro-

duced for the full–wave 3d analysis of (M)MIC

structures. A spectral domain integral operator

formulation is used in analogy to standard scatte-

ring problems. The employed iterative computa-

tional techniques avoid the handling of large

matrix equations otherwise required in the treat-
ment of complex geometries. Hence, computation

time is reduced considerably and the capability of

analyzing irregular microstrip structures is ob-
tained for problems exceeding the scope of moment

methods.

INTRODUCTION

The solution of many design problems still exist-

ing today for MICS and MMICS dependa to a high

degree on the availability of hybrid–mode full-

wave analysis tools for the characterization of

microstrip type components. In particular, the

analysis of (M)MIC structures “en bloc”, i.e.
without segmentation into substructures, is a de-

sired goal since this allows to take into account

general coupling phenomena and package effects

/1/. In this respect, the contribution presented

here is aimed towards the analysis of components

of higher geometrical complexity avoiding increa-

singly larger matrices as they come along with

conventional moment method solutions. The approach

used here formulates a source-type integral equa-

tion in analogy to scattering problems /2/,11/

and adapts the SIT to the full-wave, shielded 3d

(M)MIC problem. Hithero, SITS have only been ap-

plied to MIC problems in the quasi–static or

quasi-TEM formulation, i.e. under the assumption

of zero curl of the electric field /31–151.

The main advantage offered by the described SITS

is that the number of mathematical operations re–

quired in the algorithms increases about linearly

with M, the number of unknowns. Therefore, these

techniques offer the perspective of improved com-

putational efficiency for the analysis of com-

plicated (M)MIC shapes. In a resently published

modular approach 1~1 we use Galerkin’s method for
analyses with up to about M = 600 expansion func–

tionsas(:2fi;3s) and with computation times grow-
ing . Our research on SIT approaches
presented here is a contribution made to overcome

such practical limits on workstation computers.

SCATTERING FORMULATION FOR (M)MIC ANALYSIS BY

ITERATIVE TECHNIQUES

For the rigorous electromagnetic 3d analysis of

planar microstrip structures using SITS, a three

layer lossless shielded (M)MIC–medium as shown in

Fig. 1 is considered. Setting up scalar LSE and

LSM electromagnetic potentials at each layer, the

well known analytical spectral domain procedure

/2/ leads to a linear integral equation. We intro-

duce the operator description

&Q :=

JI
~(X,y,X’,y’) dx’dy’ , x,Y ~ Dtot (1)

Q

where the kernel ~ represents the Green’s dyadic

finite Fourier exp~nsion associated with the boun–

dary value problem. ~~ is a first kind Fredholm
type integral operator and maps the surface cur-

rent density on a subdomain ~cDtot into the

electric field in the x,y plane, the total (M)MIC

surface area Dtot= (O,a) x (O,b).

In order to apply iterative computational tech–

niques to planar circuit analysia, a specific

scattering problem is formulated in analogy to

standard scattering expressions in antenna or ra–

dar theory. In this context an “incident” electric

field ~iis generated in the “scattering plane”

(the (M)MIC substrate surface Dtot~ using one or

more impressed source current distributions J.
nmp”

~i=-~Q~imp ‘ “yG ‘tot
(2)

Here, Q c Dtot is the subregion on which the im-

pressed current density has been defined (see

Fig. 1). The specific scattering problem is then

formulated as

(3)

The region D is the microstrip conductor pattern

(scatterer) of the (M)MIC configuration of inte-

rest (Fig. 1).

To get the desired solution for (M)MIC characteri–

zation the source current distribution Limp and

the associated region Q in equation (2) must be
chosen in a physically meaningful way related to

the excitation of components in planar circuits.

Accordingly, the source current densities ~mp ap-

plied are derived from those of the fundamental

strip modes in the component reference planes.
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It may be noted, that the operator equation (3)

has only the trivial solution J = -Amp if Q C D

is choosen. Hence, the con~ition Q $ D is re–

quired, but an overlap region Q n D + a may exist

and is employed in our source concept (see Fig. 1

and Fig. 3). Further, the uniqueness of the solu–

tion of (3) is guaranteed except at eigenfrequen–

ties, for which the homogeneous equation

has non–trivial solutions.
~D’~= 0
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Fig. 1 General (M)MIC structure excited by im–

pressed sources (region Q) with illustra-

tion of the discretization scheme (mesh
nodes). D is the scattering domain, on

which the boundary conditions have to be

satisfied.

ITERATIVE TECHNIQUES AND NUMERICAL REALIZATION

Equation (3) is suited for application of the SIT
in a manner as known from true

lems.
scattering prob-

To solve the operator equation (3) we con-

sider two known iterative methods which propose

good convergence properties:

– Van den Berg s integral-square–error comPuta-

~iOnal technique, /6/-/8/, denoted as method I
m the following, and

– the (generalized bi)conjugate gradient method

recently described by Sarkar /9/ denoted as
method II here.

Method I minimizes the integral-square–error at
each iteration step n:

(4)

Basis functions linearly related to the residual

Rn are generated in each step according to the
contrast source truncation technique /6/ and are
then orthogonalized completely by a Gram-Sctiidt

procedure in order to minimize the leaat square
functional (4).

Method II uses the energy norm functional:

Since the operator in our formulation (3) is real

and symmetric if suitably normalized field quanti–

ties are employed, this is completely equivalent

to the ordinary conjugate gradient method. The

functional (5) is minimized in each step of the

iteration /9/. ~ is the exact solution to

equation (3).

The realization of SITS with the above given

algorithms requires numerical repreaentation of

the operator ~ acting on the general vector

function f. To achieve this, the following steps
have to b; carried out:

- Discretisation of the region D and approxima-
tive representation of the vector component

functions fx, fy,

- Fourier transform of functions into spectral

domain,

- Application of the operator in its spectral
form,

– Inverse Fourier transform back into spatial
domain.

The dyadic operator expression can be written as

[

-1
?-0

&D.&= Cs
o ?-;:

[

1,
with El.

o,

x,y GD

x,y.+D.

.l Fourier cosine-sine- trTcais a finite

and ~sc a sine-cosine transform and 2 are the

spectral terms of the hybrid mode Green!s dyadic.

The simplest way to discretize a shape of inter-
est is aubdiviaion into a rectangular 2d mesh

choosing adequate resolution Ax, Ay. Representa–
tion of any 2d function is then ~btained

~(m,n) ~(m!l~~crete values on the grid nodes , Y
e.g. Ny/2 N~2

<(m,n) = fx(x,y) - ~ 1 ~(x-mAx) 6(y-nAy) (8)
n=() m=o

with Ax = 2a/Nx, Ay = 2b/Ny (9)

Arbitrarily shaped (M)MIC structures are treated

simply by scanning the contour and sampling at the

mesh nodea (see Fig.1). Better approximations can

be obtained by convolution of the sampling values

with suitable subdomain basis functions, e.g.
rectangular pulse /5/, roof top /~0/,/11/, or
higher order types /1/. The functions represented

by 2d sequences of discrete values are then trans-
formed into the spectral domain by real discrete

combined sine and cosine transforms.

Ny-l Nx-l

~~s := SCAL ~ ~ ~(m,n)coa(~mi)sin( #nk) (lo)
n.0 m=O x Y

&c is defined in analogy with sine and cosine

functions interchanged and for inverse transforms
only the scale factor SCAL is replaced~ The spec–
tral operations by multiplication with Z are trun–
cated by Nx/2, Ny/2.

All 2d discrete transforms defined in equation
(10) are carried out numerically by very efficient

appropriately specialized FFT algorithms.

, (6)

(7)

Isform
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Kl!hUL1’S ANIJ ILLUSTRATIONS

In order to illustrate some details of our scat–

tering type SIT solution process, a microstriP

open stub example is considered with geometrical

data taken from /10/ (Fig. 2). OnlY the ‘ominant
longitudinal current density component JY is con-
sidered. The transverse current density Jx can be

neglected in this example. The chosen source dis-

tribution Jyimp with a Maxwell term in x direc-

tion and a ramp function in y direction is shown

in Fig. 3. with this excitation, an electr~n:l

field E is generated according to eq. (2)

forms the right hand side of the operator eq. (3).

Using a split radix FFT with Nx = 40 and N = 80
{1the SIT solution has been performed by met ods

and II. The resulting solution for f = 1.3 GHz is

illustrated in Fig. 4. The total current (Fig. 4a)

consists of the excited portion JY and the source

portion J im . In Fig. 4b the associated ~&l

electric !ie?d distribution is presented. ,

that the quantities Jytot and E tot obtained from
zthe numerical solution represen a superposition

of source and scattered contributions. The bound-

ary condition Eytot = O is satisfied on region D

only, i.e. on the inicrostrip metallization.

The normalized residual error for both methods

employed (as implicitly defined in eq. 4) is shown

in Fig. 5. For method I the normalized error de-

creases monotonically and reaches a value of less

than 0.01% after 20 iterations. Convergence be-

havior of method II is not monotonic and about 5%

accuracy is obtained with 20 iterations.
Using the reaction concept the frequency dependent

input impedance of the stub has been calculated

and compared to other results (Fig.6). we achieved
good agreement with the solution obtained by our

conventional approach /1/ in which also a mode

related source concept is employed. The deviation

from J. C. Rautio’s results /10/ is mainly caused

by the completely different source model used by

him, which consists of only one subsectional cur–

rent element and is associated with some kind of

injection effect, accordingly.
T.o demonstrate the capability of our SIT ap-

proaches to treat irregular microstrip structures

with a higher number of unknowns, the notched stub

example taken from 1101,1111 is also analyzed

here. The results shown below are obtained bY

method II using a radix–2 FFT with Nx = 128, and

Ny = 128. In Fig. 7 we illustrate the current flow

and the associated component current distributions

at 2 GHz. The normalized error decreases below 10%

in about 5 minutes on a Micro VAX. Note, that for

the solution of this example already 1712 un-

known grid values have been used which by far

exceeds the number of subsections in the original
work /10/,/11/.

We observed that the good convergence properties
of method I are deteriorated if both current com–

ponents are taken into accout, while the error

behavior of method II is maintained.

Again input impedance versus frequency computed

with SIT II and the reaction concept is given in

Fig. 8. Comparison with the original results 1~0/,

/11/ is made. The same deviation related to the
choice of the source distribution as in the open

stub example are found.

/0

Fig. 2 Microstrip open stub with discretization

and numbering of grid lines for SIT solu-

tion, geometrical data taken from /10/.

Package: a = 20mm, b = 40mm, h . 50mm

Substrate: d = Iomm, Er = 10

x

Fig. 3 Impressed source current distribution Jyimp

at region Q.

JYtot=JY+ Jyimp

Y

Eytot

7

Fig. 4
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Total current density Jytot (a) and elec-
tric field Eytot (b) in the xsY Plane ‘or
SIT solution at f = 1.3 GHz.



Fig. 5

Comparison of the

normalized errors

for both SIT meth-

ods as a function

of the number of

iterations

(open stub example ~,0

at 1.3 GHz) 02468101214161820

a]

n—

NOTCHED STUB
—.- . . . . . . .. . .--------------- . . . .-------- . . . . . . . . . . . . ,, ------------ -., . . .

Fig. 6

Input impedance of

open stub versus
frequency calculated

from SIT, method I.

Comparison with the

results of /1/ and

/10/ is shown.
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Fig. 8 Input impedance of notched stub versus
frequency calculated from SIT method II.
Comparison with the results of /~~/ is

also shown.
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